skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Snyder, Matthew_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ultrasound is a safe, noninvasive diagnostic technique used to measure internal structures such as tissues, organs, and arterial and venous blood flow. Skin‐mounted wearable ultrasound devices can enable long‐term continuous monitoring of patients to provide solutions to critical healthcare needs. However, stretchable ultrasound devices that are composed of ultrasonic transducers embedded in an elastomer matrix are incompatible with existing rigid acoustic matching layers, leading to reduced energy transmission and reduced imaging resolution. Here, a systematic study of soft composites with liquid metal (LM) fillers dispersed in elastomers reveals key strategies to tune the acoustic impedance of soft materials. Experiments supported by theoretical models demonstrate that the increase in acoustic impedance is primarily driven by the increase in density with negligible changes to the speed of sound through the material. By controlling the volume loading and particle size of the LM fillers, a material is created that achieves a high acoustic impedance 4.8 Mrayl, (> 440% increase over the polymer matrix) with low modulus (< 1 MPa) and high stretchability (> 100% strain). When the device is mechanically strained, a small decrease is observed in acoustic impedance (< 15%) with negligible decrease in sound transmittance and impact on attenuation for all droplet sizes. The stretchable acoustic matching layer is then integrated with a wearable ultrasound device and the ability to measure motion is demonstrated using a phantom model as is performed in Doppler ultrasound. 
    more » « less